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L
ight can be concentrated below the
diffraction limit as surface plasmon
polaritons (SPPs),1 electromagnetic ex-

citations formed from the coupling of light
and conduction band electrons at a metal-
dielectric interface.2,3 One method to excite
SPPs using free-space light is to structure
the surface of a metal film with subwave-
length patterns; periodic 1D and 2D arrays
are typically referred to as plasmonic crys-
tals (PCs).2�5 The SPP resonances of PCs can
be controlled by the geometry of the pat-
terns as well as the properties of the metal
and dielectric materials.3,6 The tunability of
the resonances, their energies, and their
band gaps has enabled PCs to impact a
range of applications, from biosensing7,8

to far-field focusing of light.9,10 Since the
number and range of SPPmodes are mostly
limited by periodicity, other potential appli-
cations have largely been precluded, such
as plasmonic photovoltaics, where broad-
band light trapping and waveguide effects
are desired.11 One method to produce a
broadband spectrum is the creation of plas-
monic superlattices with periodicities over
multiple length scales.12 Another strategy is
to reduce the symmetry of the PC in order to
lift degeneracies among SPP modes.13 Con-
versely, increasing rotational symmetry can
increase the number of SPPs. Periodic arrays
in 2D lattices are limited, however, to a maxi-
mum of 6-fold symmetry because of the
crystallographic restriction theorem.14 As a
result, geometries that have nontraditional

periodic arrangements can be considered
as the basis for new PC architectures.
Quasiperiodic lattices are nonperiodic

structures that contain translational order
but lack translational symmetry.15 These
arrays can exceed the 6-fold symmetry re-
striction in two dimensions. For instance,
quasiperiodic tessellations can have 8-,
10-, and 12-fold rotational symmetries.16�19

Subwavelength hole arrays can generate
SPPs in the terahertz regime through long-
range interactions within the quasiperiodic
structures, where the number of resonances
was higher than periodic PCs.20 Other work
has shown that quasiperiodic tessellated
PCs can support SPPs at visible wave-
lengths.21�23 The local order around indivi-
dual nanoholes was found to contribute
to the transmission and SPP resonance
shape.22 Because quasiperiodic nanohole
arrays are usually fabricated using focused
ion beam (FIB) milling, their patterned areas
tend to be small (<1 mm2), which is one
reason that only normal incidencemeasure-
ments have been reported. Other funda-
mental characteristics of quasiperiodic PCs,
such as lifted degeneracies and interactions
between modes, have not yet been ex-
plored because the investigation of these
properties requires larger patterned areas.
Recently, we developed moiré nanolitho-

graphy, a nanofabrication technique that
can produce patterns with rotational sym-
metries as high as 36-fold over wafer-scale
areas.24 Here we show that these moiré

* Address correspondence to
todom@northwestern.edu.

Received for review September 7, 2013
and accepted November 9, 2013.

Published online
10.1021/nn404703z

ABSTRACT This paper describes the properties of silver plasmonic crystals

with quasiperiodic rotational symmetries. Compared to periodic plasmonic

crystals, quasiperiodic moiré structures exhibited an increased number of surface

plasmon polariton modes, especially at high angles of excitation. In addition,

plasmonic band gaps were often formed at the intersections of these new modes.

To identify the origin and predict the location of the band gaps, we developed a

Bragg-based indexing system using the reciprocal lattice vectors of the moiré plasmonic crystals. We showed that even more complicated quasiperiodic

geometries could also be described by this indexing model. We anticipate that these quasiperiodic lattices will be useful for applications that require the

concentration and manipulation of light over a broadband spectrum.
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nanopatterns, in contrast to moiré PCs limited to
periodic geometries,25,26 can be transferred into plas-
monic materials to create quasiperiodic moiré PCs. We
measured reflectance spectra of a representative qua-
siperiodic moiré PC;an 8-fold silver PC;out to high
excitation angles. In the form of a dispersion diagram,
the angle-resolved data revealed a rich collection of
SPP resonances and band gaps. To interpret these
features, we developed an indexing system based on
the reciprocal lattice vectors of the moiré PCs. This
model revealed that the formation of plasmonic band
gaps from intersecting SPP modes occurred along
Bragg lines at the edges of pseudo-Brillouin zones.
Finally, we demonstrated that the plasmonic proper-
ties of a moiré PC with an incommensurate 8-fold
lattice could also be explained by our new SPP index-
ing system.

RESULTS AND DISCUSSION

To understand the properties of quasiperiodic moiré
PCs, we compared them to periodic PCs. Periodic
(4-fold) PCs were fabricated by phase-shifting photo-
lithography using a composite poly(dimethylsiloxane)
(PDMS) elastomer mask patterned with a 2D square
array of posts on a 400-nm pitch (a0).

27,28 After a single
UV exposure and development, a photoresist (Shipley
1805) pattern of 150-nm diameter features with the
same periodicity as the mask was produced over an
area of ∼5 cm � 5 cm on Si. A Cr layer was deposited

followed by lift-off of the photoresist. The Cr film
functioned as an etch mask for patterning into Si,
where the Si substrate was etched anisotropically
using deep reactive ion etching (C4F8/SF6 co-flow).
We etched down to 40 nm since this depth has shown
efficient plasmonic coupling in gratings.29,30 The Cr
layer was then removed by wet chemical etching to
reveal a patterned Si substrate (Figure 1A). Finally, we
deposited 160 nm of Ag (optically opaque) on the Si
template to create PCs.
In this paper, we describe PCs by their reciprocal

lattices generated by the Fourier transform of real-
space scanning electron microscopy (SEM) images
(Figure 1B). We used a model similar to the empty
lattice approximation of free electrons in a crystal
lattice to determine the dispersive behavior of indivi-
dual SPP modes and the band gaps that formed at
their intersections.31 In the Bragg coupling condition,
the wavevector of the SPP mode, kSPP, is given by the
in-plane wavevector of the incident light, k ), and the
grating vector G

kSPP ¼ k ) þG (1)

where G is defined by

G ¼ 2π
a0

k (2)

For square lattices, k = c1k1þ c2k2, the linear combina-
tion of k1 and k2 basis vectors. The constants c1 and c2

Figure 1. Periodic and moiré plasmonic crystals: (A) SEM image of the Si template for a 4-fold PC; (B) experimental Fourier
transformof a square latticewith basis vectors from (A); (C) reciprocal spacewith indexed reciprocal vectors of a 4-fold lattice;
(D) Si template for an 8-foldmoiré PC; (E) experimental Fourier transformof an 8-fold lattice; (F) reciprocal spacewith indexed
reciprocal vectors of 8-fold lattice. In (B), (C), (E), and (F), the kx and ky axes are in units of 2π/a0. In (C) and (F), the blue points
represent first-order scattering modes, the green points second-order scattering modes, and the red points third-order
scattering modes.
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are integers that define a specific reciprocal vector
[c1 c2] that corresponds to specific SPP modes on the
PC. The scattering order of an SPP mode is defined by
the sum of the absolute values of these constants.2,32

Figure 1C shows the locations of reciprocal vectors that
represent the first three SPP scattering orders, where
the first order (G0) is blue, the second order (G00) is
green, and the third order (G000) is red.
Throughmoiré nanolithography, the rotational sym-

metry of the resulting photoresist pattern can be
increased beyond that of the phase-shifting PDMS
mask.24 Three geometric rules govern the fabrication
of high-symmetry n-fold lattices generated frommulti-
ple UV exposures offset by different angles. First, n
must be an integer multiple of the symmetry of the
phase-shifting mask, n0. Second, the angular offset
between exposures must be equal to 360�/n. Third,
the number of exposures at equiangular offsets must
be equal to n/n0.24 Figure 1D shows an 8-fold moiré
pattern (n = 8) produced from exposing a square
phase-shifting mask (n0 = 4) twice at an angular offset
of 45� (360�/8).
Four basis vectors (k1, k2, k3, and k4) are present in

the 2D Fourier transform of the moiré PC since each
square pattern contributes two basis vectors
(Figure 1E). As a result, the 8-fold lattice requires more
reciprocal vectors to define the lattice compared to the
4-fold case (Figure 1F). For an 8-fold moiré PC, k =
c1k1 þ c2k2 þ c3k3 þ c4k4, where c1, c2, c3, and c4 are
integers. By defining four basis vectors, the scattering
order of each mode [c1 c2 c3 c4] can be determined
from the sum of the absolute values of each constant,
analogous to the 4-fold PCs. Notably, the reciprocal
lattice vectors of quasiperiodic structures can exhibit
characteristics different from periodic arrays. For ex-
ample, the vector magnitudes of higher-order recipro-
cal vectors can be less than those of lower-order
ones.33 In Figure 1F, [1001] is a second-order reciprocal
vector; however, its magnitude is less than that of the
first-order [1000] family. This property of quasiperiodic
lattices leads to a denser concentration of reciprocal
vectors.
Angle-resolved reflectance spectroscopy revealed

the propagation of SPP modes associated with the
square (4-fold) and 8-fold lattices (Figure 2). Dispersion
diagrams were constructed by stitching together a
series of angle-resolved spectra and then converting
them to energy and in-plane momentum to depict the
band structures of the PCs. Figure 2A shows SPPmodes
on a 4-fold PC at the Ag/air interface, where dips in
intensity of the reflected light indicate the excitation of
plasmon modes. A sharp SPP mode labeled I is clearly
seen between 1.6 and 2.5 eV. Above 2.5 eV, specific SPP
modes are difficult to identify. Figure 2B shows the
calculated SPP modes based on the Bragg coupling
condition using the permittivities of Ag34 where I can
be clearly identified as the [10] mode. The higher-

energy modes are a combination of [01], [01], [11],
and [11] modes.
Besides the shared modes with the 4-fold PC, the

8-fold moiré PC supported plasmonic band gaps as
well as additional SPP modes (Figure 2C). I still ap-
peared between 1.6 and 2.5 eV; however, a band gap
was present at 2.1 eV. Although the Bragg coupling
condition is typically used to identify SPP modes in
periodic PCs,4,9,35 it has not been considered for PCs
with higher rotational symmetries. We found that the
Bragg model can accurately predict the dispersion of
SPP modes in quasiperiodic arrays when the moiré
lattice is modeled as a combination of periodic lattices
at angular offsets. For an 8-fold moiré lattice, I can be
identified as the [1000] mode, analogous with the [10]
mode in the 4-fold PC (Figure 2D). They are repre-
sented by the sameG vector, which has amagnitude of
2π/a0 in the�kx direction. The two newmodes that do
not have analogous counterparts in the periodic lat-
tice, II and III, appear between 2.1 and 2.6 eVwith band
gaps of approximately 0.03 at 2.3 eV. We represent
them as [0100] and [0001] modes, and they are related
to first-order reciprocal vectors that do not exist in
the periodic case. The Bragg model predicts that
these modes should be degenerate; however, a split
between the modes is clearly observed. Azimuthal-
angle resolvedmeasurements show that this splitting

Figure 2. Dispersion diagrams of SPP modes of periodic
and moiré plasmonic crystals: (A) experimental dispersion
diagramsof a 4-fold PC; (B) calculated dispersiondiagramof
a square PC with labeled SPP modes; (C) experimental
dispersion diagram of an 8-fold moiré PC, where modes of
interest are labeled as I, II, III, and IV; (D) calculated disper-
sion diagram of an 8-fold moiré PC. The calculated disper-
sion diagrams in (B) and (D) are at the Ag/air interface with
a0 = 400 nm. The blue lines represent first-ordermodes, and
the green lines represent second-order modes.
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is inherent to the higher symmetry lattice (Supporting
Information). A weaker mode, IV, is also present
for this lattice from 2.3 to 3.2 eV. This mode can
be assigned as [0101], which is a second-order mode
composed of two basis vectors not present in the
4-fold PC.
Plasmonic band gaps can form between intersect-

ing SPP modes along boundaries between adjacent
Brillouin zones, similar to how energy gaps form via

Bragg reflections in electronic band structure.31,36

Successive Brillouin zones are separated from each
other by Bragg lines, which are perpendicular bisectors
of their reciprocal-lattice vectors. In the case of Brillouin
zones of periodic lattices, certain properties always
hold; for example, the individual areas of the zones
are equal to each other, and lower-order zones are
completely contained within higher-order zones. For
structures with higher rotational symmetry, such as our
8-fold moiré PCs, Brillouin zones do not meet these
conditions. Instead, here we consider pseudo-Brillouin
zones,37 regions in reciprocal space separated from
each other by Bragg lines. We consider these lines as
perpendicular bisectors of reciprocal vectors and use
them to predict the presence of band gaps at the
intersections of SPP modes.
The dispersion diagram in Figure 3A shows the

calculated SPPmodes of an 8-foldmoiré PC. The circled

region near 2.1 eV highlights the crossing between
the [1000] mode and two degenerate second-order
modes, [1001]/[1100]. To visualize the interaction be-
tween these particular modes in reciprocal space,G, k ),
and kSPP are plotted in Figure 3B. According to the
Bragg model, the vector sum of G0 (blue arrow) or G00

(green arrow) and k ) (orange arrow) is kSPP (black
arrow). Two important properties are seen, which are
true for the reciprocal-space representation of any
crossing between modes. First, the magnitudes of all
of the kSPP vectors are equal. Second, each kSPP
terminates on Bragg lines of equivalent orders. In this
scenario, they each terminate on first-order Bragg lines
(dashed blue lines).
Figure 4A shows an expanded region of the disper-

sion diagram in Figure 2C with three highlighted
intersections, I, IIA, and IIB. I exhibits a band gap
through the [1000] mode at the intersection be-
tween the two degenerate second-order modes,
[1001]/[1100]. IIA shows the formation of band gaps
along the [0001] mode, which is formed at intersec-
tions of the second-order modes with the third-order
mode [1011] (not shown). Noticeably, there were no
band gaps within IIB even though the [0001] mode
intersected the [1001] mode in this region. Although a
crossing between SPP modes is necessary for the
formation of band gaps in these high-symmetry moiré
PCs, an intersection alone is not sufficient, and addi-
tional conditions must also be met.
Figure 4B shows interactions in reciprocal space for

the three areas highlighted in Figure 4A. For the band
gap in I (k ) = 4.5 μm�1, E = 2.15 eV), the [1000] mode
crosses the [1001] and [1100] modes along first-order
Bragg lines (bolded diagonal blue lines) (0001), (0100),
(1000), and (0100). For the region IIA (k ) = 6.2 μm�1, E =
2.25 eV), the first-order mode [0001] crosses the third-
order mode [1011]. In reciprocal space, these interac-
tions occur at two Bragg lines in the second-order
[1010] family: (1010) and (1010) (bolded diagonal
green dotted lines). Band gaps can still be formed
along these second-order Bragg lines. When the inter-
sections between SPP modes occurred at Bragg lines

Figure 3. Interactions in reciprocal space of intersecting
SPPmodes: (A) dispersion diagram for an 8-foldmoiré PC at
the Ag/air interface (a0 = 400 nm) showing the first-order
(blue) and second-order (green) SPP modes; (B) reciprocal
space showing the vectors in the circled region in (A). The kx
and ky axes are in units of 2π/a0.

Figure 4. Formation of band gaps in an 8-fold moiré PC: (A) experimental dispersion diagramwith three highlighted regions
of interest, I, IIA, and IIB; (B) reciprocal space of the three highlighted regions in (A). The vectors in I terminate at first-order
Bragg lines; the vectors in IIA terminate at second-order Bragg lines; the vectors in IIB do not terminate on a first-order or
second-order Bragg line. Band gaps are formed at I and IIA. The kx and ky axes are in units of 2π/a0.
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that were third order or greater, however, band gaps
were not observed, as in region IIB (k ) = 8.0 μm�1, E =
2.16 eV). Similar to I, the intersections occurred be-
tween a first-order mode [0001] and a second-order
mode [1001]; however, the Bragg lines at which these
modes terminate are third order (not shown), and band
gaps were not observed. We only highlighted three
specific examples; however, ourmodel applies to other
intersections in the dispersion diagram as well.
The linear combinations of basis vectors that define

reciprocal vectors and pseudo-Brillouin zones are not
limited to quasiperiodic PCs with high rotational sym-
metries. Quasiperiodic moiré PCs can also be created
with geometries that do not exceed the rotational
symmetries of their constituent phase-shifting PDMS
masks. We classify these structures as incommensurate
since their rotational symmetries are within the crystal-
lographic restriction theorem.15 Although the symme-
try has not increased, these PCs still display properties
similar to their quasiperiodic counterparts. For exam-
ple, an incommensurate moiré PC can be created by
exposing twice through 2D square array PDMS masks
at 30� instead of 45� (Figure 5A). These conditions do
not satisfy the geometric rules discussed earlier for the
creation of higher symmetry lattices; hence, the overall
rotational symmetry of this modified lattice is only
4-fold. Four basis vectors can still be defined (labeled
k1, k2, k3, and k4), but they are not equiangular
(Figure 5B). Alternatively, we could have indexed this

system as a 4-fold lattice with a two-unit basis. As with
8-foldmoiré PCs, the scattering order of the SPPmodes
[c1 c2 c3 c4] can be determined from the sum of the
absolute values of the constants. Specific reciprocal
vectors are indexed as linear combinations of the four
basis vectors in Figure 5C.
In the incommensurate lattice, fewer SPP modes are

degenerate compared to the 8-fold case since the
overall symmetry is lower. As a result, more intersec-
tions between SPP modes occur and more band gaps
are observed (Figure 5D). Similar to the 8-fold case, four
basis vectors were used to index the SPP modes,
although different angles for the k2 (30� instead of
45�) and k4 (120� instead of 135�) basis vectors reflect
the new geometry (Figure 5E). As with the periodic
4-fold PC and 8-fold moiré PC, I is the [1000] mode
between the energies of 1.6 and 2.5 eV. A band gap at
1.7 eV is present along this mode, which was absent
in the 8-fold moiré PC. II is the [0100] mode between
the energies of 1.8 and 2.5 eV. This mode has a
prominent band gap at 2.1 eV. Additionally, a weaker
SPP mode [0110] appears near this mode at higher
energies. The Braggmodel predicts these twomodes
to be degenerate, but we observe a splitting in
energy because of a slight misalignment of the
azimuthal angle (≈1�) of the substrate during the
measurements. III consists of the [0001]/[1001]
modes between 2.5 and 2.7 eV, which contain sev-
eral band gaps.

Figure 5. An incommensurate moiré PC: (A) SEM image of the Si template for an incommensurate 8-fold moiré PC; (B)
experimental Fourier transform with basis vectors; (C) reciprocal space with indexed reciprocal vectors; (D) experimental
dispersion diagram; (E) calculated dispersion diagram.
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To analyze the band gaps in the incommensurate
moiré PC, we zoomed in on an area and highlighted six
regions with black circles (Figure 6A). Similar to the
8-fold case in Figure 4, Bragg lines can be used to
determine the location and presence of band gaps
along SPP modes. Figure 6B shows interactions in
reciprocal space for the six areas of interest. The
[1000] and [1100] modes cross in the IA (k ) = 5.2 μm�1,
E = 2.00 eV) region; the Bragg line at which each kSPP
terminates is third order (not shown), and no band gap
was formed. For regions IB, II, and IIIC, band gaps were
formed at the intersections between first-order and
second-order modes and along first-order Bragg lines.
The [1000] mode terminates at the (0100) line and the
[1100] mode terminates at the (0100) line for IB (k ) =
7.1 μm�1, E = 1.68 eV); the [0100] mode terminates at
the (1000) line and the [1100] mode terminates at the
(1000) line for II (k ) = 6.1 μm�1, E = 2.06 eV), and the
[0001] mode terminates at the (0100) line and the
[0101] mode terminates at the (0100) line for IIIC
(k ) = 9.7 μm�1, E = 2.52 eV). For the IIIA and IIIB regions,
band gaps were formed at the intersection between
first-order and third-order modes along second-order
Bragg lines. The [0001] and [1001]modes terminated at
the (1010)/(1010) Bragg lines for IIIA (k ) = 5.1 μm�1, E =
2.54 eV), and the [0001] and [0111] modes terminated

at the (0110)/(0110) Bragg lines for IIIB (k ) = 6.0 μm�1,
E = 2.52 eV). The same general rules apply to this
incommensurate PC as with the 8-fold structure. Band
gaps form if the SPP modes intersected along a first-
order or second-order Bragg line at the boundary of a
pseudo-Brillouin zone; however, they did not form at
higher-order Bragg lines.

CONCLUSIONS

In summary, we have demonstrated that quasiper-
iodic moiré PCs show rich SPP dispersion diagrams. We
observed an increase in the number of SPP modes
compared to periodic PCs as well as the presence of
plasmonic band gaps that formed at certain intersec-
tions. By adapting the Bragg model, we created an
indexing system that could predict and explain the
behavior of SPPmodes. Additionally, by defining pseu-
do-Brillouin zones and Bragg lines in these quasi-
periodic arrays, we could determine the location of
plasmonic band gaps. This model is versatile and can
be applied to any plasmonic substrate with quasiper-
iodic symmetry. Since quasiperiodicmoiré PCs can trap
light over a broadband visible spectrum and generate
tunable band gaps, we anticipate that they will expand
possibilities of plasmonic devices that currently exploit
periodic PCs.

METHODS

Phase-Shifting Photolithography and Moiré Nanolithography. A
PDMS photomask with a square lattice spacing of 400 nm was
placed into conformal contact with diluted, positive-tone, g-line
photoresist (PR) (Shipley S1805;∼120 nm thick) on a Si (100) wafer
and exposed to a broadband Hg-vapor light source (SUSS Micro-
TecMA6) at apowerdensity of 11mW/cm2. Themaskwasexposed

for 1.5 s to create the square pattern and exposed twice at 0.6 s for
themoiré patterns. Themaskwas offset by 45� betweenexposures
to create the 8-fold lattice and 30� to create the incommensurate
lattice. The exposed PR was developed (1:5 dilution of Microposit
351 developer) and resulted in arrays of PR posts on a Si substrate.

Pattern Transfer. To remove residual PR, the samples were
exposed to an O2 plasma. A 14-nm Cr sacrificial layer was

Figure 6. Formation of band gaps in an incommensurate 8-fold moiré PC: (A) experimental dispersion diagram with six
highlighted regions of interest, IA, IB, II, IIIA, IIIB, and IIIC; (B) reciprocal space of the regions in (A). The vectors in IB, II, and IIIC all
terminate at first-order Bragg lines; the vectors in IIIA and IIIB terminate at second-order Bragg lines; the vectors in IA do not
terminate on a first-order or second-order Bragg line. Band gaps are formed at IB, II, IIIA, IIIB, and IIIC. The kx and ky axes are in
units of 2π/a0.
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deposited onto the substrate with a Kurt J. Lesker PVD-75
Electron Beam Deposition System. The PR posts were removed
using Microposit Remover 1165 leaving circular holes in the Cr
layer. Si wells with depths of 40 nmwere anisotropically etched
using a C4F8/SF6 co-flow recipe with a STS LpX Pegasus Deep
Reactive Ion Etcher. The Cr layerwas removed, and 160nmof Ag
was deposited in the PVD-75 onto the Si grating to create the
plasmonic crystals.

Angle-Resolved Reflectance Spectroscopy. Zero-order reflectance
spectra were collected from θ = 10� to 60� in 1� increments
using an automated, self-designed National Instruments Lab-
VIEW program. Collimated, unpolarized white light from a
halogen lamp (100 W) illuminated the sample with a spot size
of 2 mm. The reflected light was coupled into a bundled optical
fiber connected to a Princeton Instruments Acton SP2500
spectrometer with a PIXIS:400 CCD detector. A linear interpola-
tion algorithm in Matlab converted the measured optical data
(wavelength (λ) and excitation angle (θ)) into dispersion dia-
grams (photon energy (Ephoton) and in-planewavevector of light
(k ))) using the following: Ephoton = hc/λ and k ) = (2π/λ) sin θ.
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